HODINFO is a collaborative think tank. We are an International group comprised of inventors, scientist, mechanics, tinkerers, fabricators, and out of the box thinkers. Our mission is to find innovative solutions to the problems that primarily limit the production and delivery of H2. As the world wakes up to the idea of using hydrogen it also becomes clear that immense infrastructure initiatives will be required to make it happen. If adequate solutions can be found to support HOD systems then the world can remove great and costly limitations on future applications. It is important to realize that the future is not just Hydrogen, it's Hydrogen-on-Demand.

Photos of the latest work on our engine test bed. They are:

Upper left hand.
The test bed will have a software-based controller so we are presently writing the code.  The components of a bench top test are labeled.
   A.  Controller.  It is a 44-pin demo board with a Microchip  PIC18F45K20.  It is affixed to perf board that has solder pads underneath with 0.100 inch centers.
   B.  Simulator.  Another board is programmed to produce approximate simulation of signals coming from an interface.  Components to interface with the engine will be breadboarded on a similar piece of perfboard with equivalent connectors. This way,  the controller can be tested and debugged to a large extent before it is even connected to an actual engine interface.
   C.  Power supply that provides regulated 5 VDC / 12 VDC.  Right now it is more convenient to plug into 120 VAC.
   D.  RS232 / USB adapter connects to a laptop.  The laptop runs on Ubuntu Linux. A program called minicom is used to send commands and recieve data.  The data can be stored as a CSV file and analyzed in more detail on the laptop.

Upper right hand.
Digital storage oscilloscope of the output from the engine simulator.  The trigger disk tooth position is at 6 degree increments.  Two teeth are missing so it produces a gap in the clock signal every 58 pulses.  Top dead center is located at about tooth 24 past the gap in a counter clockwise direction of rotation. The top trace is meant to simulate this crankshaft position signal.

The controller is also connected to a sensor of cylindeer pressure.  It uses this signal to tell which rotation is compression/power and which is exhaust/intake among other functions.  The bottom trace is meant to simulate an indication of compression.

Lower left hand.
The existing gas engine has a carburetor and a variable reluctance magneto system triggered off the fly wheel. Those components will not be used so that engine functions can be controlled electronically. A fuel injector valve is shown of the left. A throttle body will be machined from a block of aluminium. The valve requires a 42 psi.  fuel pressure feed.  This whole system will replace the carburetor.  Also, an ignition system will be used that can be fired by a transistor output.  Shown are a 35 kV ignition coil with spark plug wire attached and a capacitor typically used for this type of system. This way, fuel feed rate,  air/fuel mixture ratio, and spark advance can all be controlled electronically.

Lower right hand.
Shown on the right is a cast iron V-belt pulley with the trigger disk bolted to it. The horsepower rating of a heavy duty V-belt is reached at about 50 amps on 12 volt alternators while it would require about 200 amps to fully load a 6.5 hp engine. To get better capacity, an 8 rib belt to a 200 amp alternator will be tried.  This requires an 8 rib pulley shown on the left.  The engine has a 3/4 in.  keyed shaft while the bore on the 8 rib pulley is 7/8 in. A 3/4 in. to 7/8 in. bushing is shown.  Also, a 1/4 in. by 3/16 in. rectangular key must be used as opposed to a 3/16 in. square key. A rigid coupling on the engine shaft and flange bearing on the other end may be used to extend the shaft.  A machine shop cut a 3/16 key way in the 8 rib pulley for us. Currently,  a wooden plank is being used as the base for all equipment.  It likely that a base made from 1/2 in. aluminum plate will be used for a test bed with extended capacity.

At some point,  a 13 hp engine might be tested. Then a pair of 200 amp alternators will be needed. The shaft on this engine will be 1 in. with a 1/4 in. key way. There are adapter bushings with a stepped key for going from 1 in. dia. / 1/4 in. key down to 7/8 in. dia. / 3/16 in. key.

The advantage of using DC alternators is that the load response is roughly constant over a certain range of speeds.  This is needed to run an engine at different speeds and loads. An AC generator will overheat if it is run under heavy load at any speed other than the one correspnding to 60 Hz. To load the alternator we use a series of relays switching 20 amps each.  Each relay is connected to a coil of 18 ga. nichrome wire immersed in water. One last coil is connected to a PWM for variable current.   This system is also under electronic control. The estimated IMEP is used as the input and the relay/PWM system is used as the ouptut of a PID loop that applies a regulated load to the engine.

A video of a preliminary experiment is found on youtube at: youtube

Our website for HHO research:  hho-research.org

Views: 115


You need to be a member of HODINFO to add comments!


Comment by charles ware on October 17, 2016 at 4:03pm

Thats interesting.  Does that guy have a company with website?   We are working at the lab level still.   The basic experiment still looks pretty much like what was shown in this video:


Comment by Martin Moore on October 13, 2016 at 5:59am

Yes of course I should have been a little more specific. I meant the ignition spark and injection where used.

I know an experimenter who moved up in scale was making HHO systems for BIG diesels and ships and who designed his own engine management system. Evidently he is being contracted to make systems for ships running up and down the Rhine as they can burn cheaper fuel using his system because of a reduction in nasty emissions.

Comment by charles ware on October 12, 2016 at 7:52pm

Not quite sure what you mean by "timing".  On a 4-stroke single cylinder gas engine, timing on the valve train is pretty much fixed.  The spark on the other hand is completely bypassed and taken over by the controller.  A fuel injector valve is also used instead of a carburetor and that timing is digitally controlled.

Monitoring pressure inside the cylinder enables estimation of energy output which is used to optimize timing of these outputs.

Comment by Martin Moore on September 6, 2016 at 1:59am

That is an interesting engineering project. I wonder, have you had to , or are you going to, experiment with changing the timing of the engine at all?

Sorry if you have already covered this point elsewhere but I've only just read your post.

*** Translate HODINFO ***

Archive this page

Latest Activity

Roy posted a status
"Tesla a leader on free energy. For those that have time to read here's a link. http://fuel-efficient-vehicles.org/energy-news/?page_id=785"
Apr 14
broandrew commented on gabet123's group 'HHO TORCH GROUP'
Apr 11
broandrew joined gabet123's group
Apr 11
charles ware replied to charles ware's discussion 'Measurements of temperature and electron density of oxyhydrogen (HHO) flame'
Mar 29
soohaeng hong is now a member of HODINFO
Mar 21
soohaeng hong favorited Randy Bunn's discussion We have developed a home heating unit!
Mar 21
Andrew Batty shared their discussion on Twitter
Mar 17
Andrew Batty posted a discussion
Mar 17
Andrew Batty replied to Andrew Batty's discussion 'Hydrogen for Health'
Mar 17
Slobodan Stankovic replied to charles ware's discussion 'Measurements of temperature and electron density of oxyhydrogen (HHO) flame'
Mar 16
Slobodan Stankovic updated their profile
Mar 16
gabet123 posted a discussion
Mar 15
Jeremy Dukes posted a status
"FREE Installation of any reputable hho kit on Sundays in San Diego. Call me anytime 6194087854"
Mar 14
gabet123 left a comment for Anthony Preston
Mar 1
Anthony Preston posted a discussion
Feb 28
Anthony Preston commented on gabet123's page 'FUNDING'
Feb 28

© 2017   Created by gabet123.   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service

Live Chat